On the chromatic number of some flip graphsArticleAuthors: Ruy Fabila-Monroy
1; David Flores-Peñaloza
2; Clemens Huemer
3; Ferran Hurtado
4; Jorge Urrutia
1; David R. Wood
5
NULL##0000-0001-8866-3041##NULL##NULL##NULL##0000-0001-8866-3041
Ruy Fabila-Monroy;David Flores-Peñaloza;Clemens Huemer;Ferran Hurtado;Jorge Urrutia;David R. Wood
- 1 Instituto de Matematicas [México]
- 2 Departamento de Matematicas [Mexico]
- 3 Applied Mathematics IV Department
- 4 Departament de Matemàtica Aplicada II
- 5 Department of Mathematics and Statistics [Melbourne]
Graphs and Algorithms
[en]
This paper studies the chromatic number of the following four flip graphs (under suitable definitions of a flip): the flip graph of perfect matchings of a complete graph of even order, the flip graph of triangulations of a convex polygon (the associahedron), the flip graph of non-crossing Hamiltonian paths of a set of points in convex position, and the flip graph of triangles in a convex point set. We give tight bounds for the latter two cases and upper bounds for the first two.
Volume: Vol. 11 no. 2
Section: Graph and Algorithms
Published on: January 1, 2009
Imported on: March 26, 2015
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]