Shu-Chiuan Chang ; Lung-Chi Chen - Structure of spanning trees on the two-dimensional Sierpinski gasket

dmtcs:476 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, Vol. 12 no. 3 - https://doi.org/10.46298/dmtcs.476
Structure of spanning trees on the two-dimensional Sierpinski gasketArticle

Authors: Shu-Chiuan Chang 1; Lung-Chi Chen 2

  • 1 Department of Physics [Tainan]
  • 2 Department of Mathematics [Taipei]

Consider spanning trees on the two-dimensional Sierpinski gasket SG(n) where stage n is a non-negative integer. For any given vertex x of SG(n), we derive rigorously the probability distribution of the degree j ∈{1,2,3,4} at the vertex and its value in the infinite n limit. Adding up such probabilities of all the vertices divided by the number of vertices, we obtain the average probability distribution of the degree j. The corresponding limiting distribution φj gives the average probability that a vertex is connected by 1, 2, 3 or 4 bond(s) among all the spanning tree configurations. They are rational numbers given as φ1=10957/40464, φ2=6626035/13636368, φ3=2943139/13636368, φ4=124895/4545456.


Volume: Vol. 12 no. 3
Section: Combinatorics
Published on: January 1, 2011
Imported on: March 26, 2015
Keywords: [INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

Consultation statistics

This page has been seen 374 times.
This article's PDF has been downloaded 311 times.