Discrete Mathematics & Theoretical Computer Science |
In this paper, we consider pattern avoidance in a subset of words on $\{1,1,2,2,\dots,n,n\}$ called reverse double lists. In particular a reverse double list is a word formed by concatenating a permutation with its reversal. We enumerate reverse double lists avoiding any permutation pattern of length at most 4 and completely determine the corresponding Wilf classes. For permutation patterns $\rho$ of length 5 or more, we characterize when the number of $\rho$-avoiding reverse double lists on $n$ letters has polynomial growth. We also determine the number of $1\cdots k$-avoiders of maximum length for any positive integer $k$.