Fabrizio Frati - Lower Bounds on the Area Requirements of Series-Parallel Graphs

dmtcs:500 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, Vol. 12 no. 5 - https://doi.org/10.46298/dmtcs.500
Lower Bounds on the Area Requirements of Series-Parallel GraphsArticle

Authors: Fabrizio Frati ORCID1,2

Graphs and Algorithms

[en]
We show that there exist series-parallel graphs requiring Omega(n2(root log n)) area in any straight-line or poly-line grid drawing. Such a result is achieved in two steps. First, we show that, in any straight-line or poly-line drawing of K(2,n), one side of the bounding box has length Omega(n), thus answering two questions posed by Biedl et al. Second, we show a family of series-parallel graphs requiring Omega(2(root log n)) width and Omega(2(root log n)) height in any straight-line or poly-line grid drawing. Combining the two results, the Omega(n2(root log n)) area lower bound is achieved.


Volume: Vol. 12 no. 5
Section: Graph and Algorithms
Published on: January 1, 2010
Imported on: March 26, 2015
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] planar graphs, series-parallel graphs, area requirements, graph drawing, straight-line drawings

1 Document citing this article

Consultation statistics

This page has been seen 695 times.
This article's PDF has been downloaded 617 times.