Convex Partitions of Graphs induced by Paths of Order Three
Authors: C. C. Centeno 1; S. Dantas 2; M. C. Dourado 1; Dieter Rautenbach 3; Jayme Luiz Szwarcfiter 1
NULL##NULL##NULL##NULL##NULL
C. C. Centeno;S. Dantas;M. C. Dourado;Dieter Rautenbach;Jayme Luiz Szwarcfiter
1 Instituto de Matemática da Universidade Federal do Rio de Janeiro
2 Instituto de Matematica [Fluminense]
3 Institut für Optimierung und Operations Research
A set C of vertices of a graph G is P(3)-convex if v is an element of C for every path uvw in G with u, w is an element of C. We prove that it is NP-complete to decide for a given graph G and a given integer p whether the vertex set of G can be partitioned into p non-empty disjoint P(3)-convex sets. Furthermore, we study such partitions for a variety of graph classes.