Brendon Rhoades - The cluster and dual canonical bases of Z[x(11), ..., x(33)] are equal

dmtcs:515 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, Vol. 12 no. 5 - https://doi.org/10.46298/dmtcs.515
The cluster and dual canonical bases of Z[x(11), ..., x(33)] are equalArticle

Authors: Brendon Rhoades 1

  • 1 Department of Mathematics [MIT]

The polynomial ring Z[x(11), ..., x(33)] has a basis called the dual canonical basis whose quantization facilitates the study of representations of the quantum group U-q(sl(3) (C)). On the other hand, Z[x(1 1), ... , x(33)] inherits a basis from the cluster monomial basis of a geometric model of the type D-4 cluster algebra. We prove that these two bases are equal. This extends work of Skandera and proves a conjecture of Fomin and Zelevinsky.


Volume: Vol. 12 no. 5
Section: Combinatorics
Published on: January 1, 2010
Imported on: March 26, 2015
Keywords: quantum group,cluster algebra,canonical basis,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

Consultation statistics

This page has been seen 360 times.
This article's PDF has been downloaded 521 times.