Edge-Removal and Non-Crossing Configurations in Geometric GraphsArticleAuthors: Oswin Aichholzer
1; Sergio Cabello
2; Ruy Fabila-Monroy
3; David Flores-Peñaloza
4; Thomas Hackl
1; Clemens Huemer
5; Ferran Hurtado
6; David R. Wood
7
NULL##0000-0002-3183-4126##NULL##NULL##NULL##NULL##NULL##0000-0001-8866-3041
Oswin Aichholzer;Sergio Cabello;Ruy Fabila-Monroy;David Flores-Peñaloza;Thomas Hackl;Clemens Huemer;Ferran Hurtado;David R. Wood
- 1 Institute for Software Technology [Graz]
- 2 Departement of Mathematics [Slovenia]
- 3 Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional
- 4 Departamento de Matematicas [Mexico]
- 5 Applied Mathematics IV Department
- 6 Departament de Matemàtica Aplicada II
- 7 Department of Mathematics and Statistics [Melbourne]
Graphs and Algorithms
[en]
A geometric graph is a graph G = (V, E) drawn in the plane, such that V is a point set in general position and E is a set of straight-line segments whose endpoints belong to V. We study the following extremal problem for geometric graphs: How many arbitrary edges can be removed from a complete geometric graph with n vertices such that the remaining graph still contains a certain non-crossing subgraph. The non-crossing subgraphs that we consider are perfect matchings, subtrees of a given size, and triangulations. In each case, we obtain tight bounds on the maximum number of removable edges.
Volume: Vol. 12 no. 1
Section: Graph and Algorithms
Published on: January 1, 2010
Imported on: March 26, 2015
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] extremal graph theory, geometric graph, perfect matching, spanning tree