Oswin Aichholzer ; Sergio Cabello ; Ruy Fabila-Monroy ; David Flores-Peñaloza ; Thomas Hackl et al.
-
Edge-Removal and Non-Crossing Configurations in Geometric Graphs
Oswin Aichholzer;Sergio Cabello;Ruy Fabila-Monroy;David Flores-Peñaloza;Thomas Hackl;Clemens Huemer;Ferran Hurtado;David R. Wood
1 Institute for Software Technology [Graz]
2 Departement of Mathematics [Slovenia]
3 Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional
4 Departamento de Matematicas [Mexico]
5 Applied Mathematics IV Department
6 Departament de Matemàtica Aplicada II
7 Department of Mathematics and Statistics [Melbourne]
A geometric graph is a graph G = (V, E) drawn in the plane, such that V is a point set in general position and E is a set of straight-line segments whose endpoints belong to V. We study the following extremal problem for geometric graphs: How many arbitrary edges can be removed from a complete geometric graph with n vertices such that the remaining graph still contains a certain non-crossing subgraph. The non-crossing subgraphs that we consider are perfect matchings, subtrees of a given size, and triangulations. In each case, we obtain tight bounds on the maximum number of removable edges.
Pavle V. M. Blagojević;Günter Rote;Johanna K. Steinmeyer;Günter M. Ziegler, 2017, Convex Equipartitions of Colored Point Sets, arXiv (Cornell University), 61, 2, pp. 355-363, 10.1007/s00454-017-9959-7, http://arxiv.org/abs/1705.03953.
Ahmad Biniaz;Prosenjit Bose;Anil Maheshwari;Michiel Smid, 2015, Packing Plane Perfect Matchings into a Point Set, Discrete Mathematics & Theoretical Computer Science, Vol. 17 no.2, Graph Theory, 10.46298/dmtcs.2132, https://doi.org/10.46298/dmtcs.2132.
Luis Barba;Ruy Fabila-Monroy;Dolores Lara;Jesús Leaños;Cynthia Rodrıguez;et al., 2013, The Erdős-Sós conjecture for geometric graphs, Discrete Mathematics & Theoretical Computer Science, Vol. 15 no. 1, Combinatorics, 10.46298/dmtcs.628, https://doi.org/10.46298/dmtcs.628.