A de Bruijn - Erdos theorem and metric spacesArticle
Authors: Ehsan Chiniforooshan 1; Vasek Chvatal 2
NULL##NULL
Ehsan Chiniforooshan;Vasek Chvatal
1 Google Inc.
2 Department of Computer Science and Software Engineering [Montreal]
De Bruijn and Erdos proved that every noncollinear set of n points in the plane determines at least n distinct lines. Chen and Chvatal suggested a possible generalization of this theorem in the framework of metric spaces. We provide partial results in this direction.
Funder: Natural Sciences and Engineering Research Council of Canada
Bibliographic References
4 Documents citing this article
Ida Kantor, 2022, Lines in the Plane with the $$L_1$$ Metric, Discrete & Computational Geometry, 70, 3, pp. 960-974, 10.1007/s00454-022-00443-3.
Pierre Aboulker;Xiaomin Chen;Guangda Huzhang;Rohan Kapadia;Cathryn Supko, 2016, Lines, Betweenness and Metric Spaces, arXiv (Cornell University), 56, 2, pp. 427-448, 10.1007/s00454-016-9806-2, https://arxiv.org/abs/1412.8283.
Laurent Beaudou;Adrian Bondy;Xiaomin Chen;Ehsan Chiniforooshan;Maria Chudnovsky;et al., 2015, A De Bruijn–Erdős Theorem for Chordal Graphs, The Electronic Journal of Combinatorics, 22, 1, 10.37236/3527, https://doi.org/10.37236/3527.