Biane, Philippe and Josuat-Vergès, Matthieu - Minimal factorizations of a cycle: a multivariate generating function

dmtcs:6318 - Discrete Mathematics & Theoretical Computer Science, April 22, 2020, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
Minimal factorizations of a cycle: a multivariate generating function

Authors: Biane, Philippe and Josuat-Vergès, Matthieu

It is known that the number of minimal factorizations of the long cycle in the symmetric group into a product of k cycles of given lengths has a very simple formula: it is nk−1 where n is the rank of the underlying symmetric group and k is the number of factors. In particular, this is nn−2 for transposition factorizations. The goal of this work is to prove a multivariate generalization of this result. As a byproduct, we get a multivariate analog of Postnikov's hook length formula for trees, and a refined enumeration of final chains of noncrossing partitions.


Volume: DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
Published on: April 22, 2020
Submitted on: July 4, 2016
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]


Share

Consultation statistics

This page has been seen 39 times.
This article's PDF has been downloaded 40 times.