In this paper, we introduce therhombic alternative tableaux, whose weight generating functions providecombinatorial formulae to compute the steady state probabilities of the two-species ASEP. In the ASEP, there aretwo species of particles, oneheavyand onelight, on a one-dimensional finite lattice with open boundaries, and theparametersα,β, andqdescribe the hopping probabilities. The rhombic alternative tableaux are enumerated by theLah numbers, which also enumerate certainassembl ́ees of permutations. We describe a bijection between the rhombicalternative tableaux and these assembl ́ees. We also provide an insertion algorithm that gives a weight generatingfunction for the assemb ́ees. Combined, these results give a bijective proof for the weight generating function for therhombic alternative tableaux.

Source : oai:HAL:hal-02168122v1

Volume: DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)

Published on: April 22, 2020

Submitted on: July 4, 2016

Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]

This page has been seen 12 times.

This article's PDF has been downloaded 41 times.