Art M. Duval ; Bennet Goeckner ; Caroline J. Klivans ; Jeremy Martin
-
A non-partitionable Cohen–Macaulay simplicial complex
dmtcs:6325 -
Discrete Mathematics & Theoretical Computer Science,
April 22, 2020,
DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
-
https://doi.org/10.46298/dmtcs.6325
A non-partitionable Cohen–Macaulay simplicial complexArticle
Authors: Art M. Duval 1; Bennet Goeckner 2; Caroline J. Klivans 3; Jeremy Martin 2
NULL##NULL##NULL##NULL
Art M. Duval;Bennet Goeckner;Caroline J. Klivans;Jeremy Martin
A long-standing conjecture of Stanley states that every Cohen–Macaulay simplicial complex is partition- able. We disprove the conjecture by constructing an explicit counterexample. Due to a result of Herzog, Jahan and Yassemi, our construction also disproves the conjecture that the Stanley depth of a monomial ideal is always at least its depth.
Bakhtawar Shaukat;Ahtsham Ul Haq;Muhammad Ishaq, 2022, Some algebraic Invariants of the residue class rings of the edge ideals of perfect semiregular trees, arXiv (Cornell University), 51, 6, pp. 2364-2383, 10.1080/00927872.2022.2159968, https://arxiv.org/abs/2110.15031.
Malik Muhammad Suleman Shahid;Muhammad Ishaq;Anuwat Jirawattanapanit;Khanyaluck Subkrajang, 2022, Depth and Stanley depth of the edge ideals of multi triangular snake and multi triangular ouroboros snake graphs, AIMS Mathematics, 7, 9, pp. 16449-16463, 10.3934/math.2022900, https://doi.org/10.3934/math.2022900.
Masahiro Hachimori, 2021, Sequential Partitions of Nonpure Simplicial Complexes, Graphs and Combinatorics, 37, 5, pp. 1891-1904, 10.1007/s00373-021-02339-0.
Naeem Ud Din;Muhammad Ishaq;Zunaira Sajid, 2021, Values and bounds for depth and Stanley depth of some classes of edge ideals, AIMS Mathematics, 6, 8, pp. 8544-8566, 10.3934/math.2021496, https://doi.org/10.3934/math.2021496.
Somayeh Bandari;Raheleh Jafari, 2021, Minimal depth of monomial ideals via associated radical ideals, Archiv der Mathematik, 117, 5, pp. 495-507, 10.1007/s00013-021-01656-3.
S. A. Seyed Fakhari, Springer proceedings in mathematics & statistics, Homological and Combinatorial Properties of Powers of Cover Ideals of Graphs, pp. 143-159, 2020, 10.1007/978-3-030-52111-0_11.
Zahid IQBAL;Muhammad ISHAQ;Muhammad Ahsan BİNYAMİN, 2020, Depth and Stanley depth of the edge ideals of the strong product of some graphs, Hacettepe Journal of Mathematics and Statistics, 50, 1, pp. 92-109, 10.15672/hujms.638033, https://doi.org/10.15672/hujms.638033.
Jia-Bao Liu;Mobeen Munir;Raheel Farooki;Muhammad Imran Qureshi;Quratulien Muneer, 2019, Stanley Depth of Edge Ideals of Some Wheel-Related Graphs, Mathematics, 7, 2, pp. 202, 10.3390/math7020202, https://doi.org/10.3390/math7020202.
S. A. Seyed Fakhari, 2019, Stability of depth and Stanley depth of symbolic powers of squarefree monomial ideals, Proceedings of the American Mathematical Society, 148, 5, pp. 1849-1862, 10.1090/proc/14864, https://doi.org/10.1090/proc/14864.
S. A. Seyed Fakhari, 2019, On the depth and Stanley depth of the integral closure of powers of monomial ideals, Collectanea mathematica, 70, 3, pp. 447-459, 10.1007/s13348-019-00240-x.
Zahid Iqbal;Muhammad Ishaq, 2019, Depth and Stanley depth of the edge ideals of the powers of paths and cycles, Analele Universităţii "Ovidius" Constanţa. Seria Matematică, 27, 3, pp. 113-135, 10.2478/auom-2019-0037, https://doi.org/10.2478/auom-2019-0037.
James Murdock;Theodore Murdock, 2018, Block Stanley Decompositions II. Greedy Algorithms, Applications, and Open Problems, Bulletin of the Iranian Mathematical Society, 45, 1, pp. 127-172, 10.1007/s41980-018-0123-9.
Masahiro Hachimori, Indian statistical institute series, Optimization Problems on Acyclic Orientations of Graphs, Shellability of Simplicial Complexes, and Acyclic Partitions, pp. 49-66, 2018, 10.1007/978-981-13-3059-9_3.
S. A. Seyed Fakhari, Springer proceedings in mathematics & statistics, On the Stanley Depth and the Schmitt–Vogel Number of Squarefree Monomial Ideals, pp. 77-82, 2018, 10.1007/978-3-319-90493-1_3.
S. A. SEYED FAKHARI, 2017, ON THE STANLEY DEPTH AND SIZE OF MONOMIAL IDEALS, Glasgow Mathematical Journal, 59, 3, pp. 705-715, 10.1017/s0017089516000495.
Zahid Iqbal;Muhammad Ishaq;Muhammad Aamir, 2017, Depth and Stanley depth of the edge ideals of square paths and square cycles, arXiv (Cornell University), 46, 3, pp. 1188-1198, 10.1080/00927872.2017.1339068.
Mina Bigdeli;Ali Akbar Yazdan Pour;Rashid Zaare-Nahandi, 2016, Stability of Betti numbers under reduction processes: Towards chordality of clutters, Journal of Combinatorial Theory Series A, 145, pp. 129-149, 10.1016/j.jcta.2016.06.001, https://doi.org/10.1016/j.jcta.2016.06.001.