Harrison Chapman - Asymptotic laws for knot diagrams

dmtcs:6329 - Discrete Mathematics & Theoretical Computer Science, April 22, 2020, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) - https://doi.org/10.46298/dmtcs.6329
Asymptotic laws for knot diagramsArticle

Authors: Harrison Chapman 1

We study random knotting by considering knot and link diagrams as decorated, (rooted) topological maps on spheres and sampling them with the counting measure on from sets of a fixed number of vertices n. We prove that random rooted knot diagrams are highly composite and hence almost surely knotted (this is the analogue of the Frisch-Wasserman-Delbruck conjecture) and extend this to unrooted knot diagrams by showing that almost all knot diagrams are asymmetric. The model is similar to one of Dunfield, et al.


Volume: DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
Published on: April 22, 2020
Imported on: July 4, 2016
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
Funding:
    Source : OpenAIRE Graph
  • RTG: Algebra, Algebraic Geometry, and Number Theory; Funder: National Science Foundation; Code: 1344994

Consultation statistics

This page has been seen 223 times.
This article's PDF has been downloaded 496 times.