Hailun Zheng - The flag upper bound theorem for 3- and 5-manifolds

dmtcs:6335 - Discrete Mathematics & Theoretical Computer Science, April 22, 2020, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) - https://doi.org/10.46298/dmtcs.6335
The flag upper bound theorem for 3- and 5-manifoldsArticle

Authors: Hailun Zheng 1

  • 1 Department of Mathematics [Seattle]

We prove that among all flag 3-manifolds on n vertices, the join of two circles with [n 2] and [n 2] vertices respectively is the unique maximizer of the face numbers. This solves the first case of a conjecture due to Lutz and Nevo. Further, we establish a sharp upper bound on the number of edges of flag 5-manifolds and characterize the cases of equality. We also show that the inequality part of the flag upper bound conjecture continues to hold for all flag 3-dimensional Eulerian complexes and characterize the cases of equality in this class.


Volume: DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
Published on: April 22, 2020
Imported on: July 4, 2016
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
Funding:
    Source : OpenAIRE Graph
  • Combinatorics, algebra, and geometry of face numbers; Funder: National Science Foundation; Code: 1361423

2 Documents citing this article

Consultation statistics

This page has been seen 220 times.
This article's PDF has been downloaded 254 times.