Emmanuel Tsukerman ; Lauren Williams ; Bernd Sturmfels
-
Symmetric matrices, Catalan paths, and correlations
dmtcs:6337 -
Discrete Mathematics & Theoretical Computer Science,
April 22, 2020,
DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
-
https://doi.org/10.46298/dmtcs.6337
Symmetric matrices, Catalan paths, and correlationsArticle
Authors: Emmanuel Tsukerman 1; Lauren Williams 1; Bernd Sturmfels 1
Kenyon and Pemantle (2014) gave a formula for the entries of a square matrix in terms of connected principal and almost-principal minors. Each entry is an explicit Laurent polynomial whose terms are the weights of domino tilings of a half Aztec diamond. They conjectured an analogue of this parametrization for symmetric matrices, where the Laurent monomials are indexed by Catalan paths. In this paper we prove the Kenyon-Pemantle conjecture, and apply this to a statistics problem pioneered by Joe (2006). Correlation matrices are represented by an explicit bijection from the cube to the elliptope.