Valentin Féray - Cyclic inclusion-exclusion and the kernel of P -partitions

dmtcs:6344 - Discrete Mathematics & Theoretical Computer Science, April 22, 2020, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) - https://doi.org/10.46298/dmtcs.6344
Cyclic inclusion-exclusion and the kernel of P -partitionsArticle

Authors: Valentin Féray 1

  • 1 Institut für Mathematik [Zürich]

Following the lead of Stanley and Gessel, we consider a linear map which associates to an acyclic directed graph (or a poset) a quasi-symmetric function. The latter is naturally defined as multivariate generating series of non-decreasing functions on the graph (or of P -partitions of the poset).We describe the kernel of this linear map, using a simple combinatorial operation that we call cyclic inclusion- exclusion. Our result also holds for the natural non-commutative analog and for the commutative and non-commutative restrictions to bipartite graphs.


Volume: DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
Published on: April 22, 2020
Imported on: July 4, 2016
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]

Consultation statistics

This page has been seen 214 times.
This article's PDF has been downloaded 197 times.