We define two refinements of the skew length statistic on simultaneous core partitions. The first one relies on hook lengths and is used to prove a refined version of the theorem stating that the skew length is invariant under conjugation of the core. The second one is equivalent to a generalisation of Shi tableaux to the rational level of Catalan combinatorics. We prove that the rational Shi tableau is injective. Moreover we present a uniform definition of the rational Shi tableau for Weyl groups and conjecture injectivity in the general case.

Source : oai:HAL:hal-02166327v1

Volume: DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)

Published on: April 22, 2020

Submitted on: July 4, 2016

Keywords: Combinatorics,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]

This page has been seen 11 times.

This article's PDF has been downloaded 28 times.