Morales, Alejandro H. and Pak, Igor and Panova, Greta - Hook formulas for skew shapes

dmtcs:6354 - Discrete Mathematics & Theoretical Computer Science, April 22, 2020, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
Hook formulas for skew shapes

Authors: Morales, Alejandro H. and Pak, Igor and Panova, Greta

The celebrated hook-length formula gives a product formula for the number of standard Young tableaux of a straight shape. In 2014, Naruse announced a more general formula for the number of standard Young tableaux of skew shapes as a positive sum over excited diagrams of products of hook-lengths. We give two q-analogues of Naruse's formula for the skew Schur functions and for counting reverse plane partitions of skew shapes. We also apply our results to border strip shapes and their generalizations.


Volume: DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
Published on: April 22, 2020
Submitted on: July 4, 2016
Keywords: Combinatorics,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]


Share

Consultation statistics

This page has been seen 13 times.
This article's PDF has been downloaded 32 times.