The problem of computing products of Schubert classes in the cohomology ring can be formulated as theproblem of expanding skew Schur polynomial into the basis of ordinary Schur polynomials. We reformulate theproblem of computing the structure constants of the Grothendieck ring of a Grassmannian variety with respect to itsbasis of Schubert structure sheaves in a similar way; we address the problem of expanding the generating functions forskew reverse-plane partitions into the basis of polynomials which are Hall-dual to stable Grothendieck polynomials. From this point of view, we produce a chain of bijections leading to Buch’s K-theoretic Littlewood-Richardson rule.

Source : oai:HAL:hal-02168126v1

Volume: DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)

Published on: April 22, 2020

Submitted on: July 4, 2016

Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]

This page has been seen 25 times.

This article's PDF has been downloaded 59 times.