We present a general diagrammatic approach to the construction of efficient algorithms for computingthe Fourier transform of a function on a finite group. By extending work which connects Bratteli diagrams to theconstruction of Fast Fourier Transform algorithms we make explicit use of the path algebra connection and work inthe setting of quivers. In this setting the complexity of an algorithm for computing a Fourier transform reduces to pathcounting in the Bratelli diagram, and we generalize Stanley's work on differential posets to provide such counts. Ourmethods give improved upper bounds for computing the Fourier transform for the general linear groups over finitefields, the classical Weyl groups, and homogeneous spaces of finite groups.

Source : oai:HAL:hal-02166353v1

Volume: DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)

Published on: April 22, 2020

Submitted on: July 4, 2016

Keywords: Combinatorics,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]

This page has been seen 38 times.

This article's PDF has been downloaded 74 times.