Sergi Elizalde ; Peter R. W. McNamara - On intervals of the consecutive pattern poset

dmtcs:6380 - Discrete Mathematics & Theoretical Computer Science, April 22, 2020, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) - https://doi.org/10.46298/dmtcs.6380
On intervals of the consecutive pattern posetArticle

Authors: Sergi Elizalde 1; Peter R. W. McNamara

  • 1 Department of Mathematics [Dartmouth]

The consecutive pattern poset is the infinite partially ordered set of all permutations where σ ≤ τ if τ has a subsequence of adjacent entries in the same relative order as the entries of σ. We study the structure of the intervals in this poset from topological, poset-theoretic, and enumerative perspectives. In particular, we prove that all intervals are rank-unimodal and strongly Sperner, and we characterize disconnected and shellable intervals. We also show that most intervals are not shellable and have Mo ̈bius function equal to zero.


Volume: DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
Published on: April 22, 2020
Imported on: July 4, 2016
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]

Consultation statistics

This page has been seen 245 times.
This article's PDF has been downloaded 237 times.