Matthew R. Mills - Maximal green sequences for arbitrary triangulations of marked surfaces (Extended Abstract)

dmtcs:6383 - Discrete Mathematics & Theoretical Computer Science, April 22, 2020, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) - https://doi.org/10.46298/dmtcs.6383
Maximal green sequences for arbitrary triangulations of marked surfaces (Extended Abstract)Article

Authors: Matthew R. Mills 1

In general, the existence of a maximal green sequence is not mutation invariant. In this paper we show that it is in fact mutation invariant for cluster quivers associated to most marked surfaces. We develop a procedure to find maximal green sequences for cluster quivers associated to an arbitrary triangulation of closed higher genus marked surfaces with at least two punctures. As a corollary, it follows that any triangulation of a marked surface with at least one boundary component has a maximal green sequence.


Volume: DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
Published on: April 22, 2020
Imported on: July 4, 2016
Keywords: Combinatorics,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]

Consultation statistics

This page has been seen 186 times.
This article's PDF has been downloaded 238 times.