Scott Andrews ; Nathaniel Thiem - The generalized Gelfand–Graev characters of GLn(Fq)

dmtcs:6406 - Discrete Mathematics & Theoretical Computer Science, April 22, 2020, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) - https://doi.org/10.46298/dmtcs.6406
The generalized Gelfand–Graev characters of GLn(Fq)Article

Authors: Scott Andrews 1; Nathaniel Thiem 2

Introduced by Kawanaka in order to find the unipotent representations of finite groups of Lie type, gener- alized Gelfand–Graev characters have remained somewhat mysterious. Even in the case of the finite general linear groups, the combinatorics of their decompositions has not been worked out. This paper re-interprets Kawanaka's def- inition in type A in a way that gives far more flexibility in computations. We use these alternate constructions to show how to obtain generalized Gelfand–Graev representations directly from the maximal unipotent subgroups. We also explicitly decompose the corresponding generalized Gelfand–Graev characters in terms of unipotent representations, thereby recovering the Kostka–Foulkes polynomials as multiplicities.


Volume: DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
Published on: April 22, 2020
Imported on: July 4, 2016
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]

Consultation statistics

This page has been seen 138 times.
This article's PDF has been downloaded 334 times.