Alexander Belton ; Dominique Guillot ; Apoorva Khare ; Mihai Putinar - Schur polynomials and matrix positivity preservers

dmtcs:6408 - Discrete Mathematics & Theoretical Computer Science, April 22, 2020, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) - https://doi.org/10.46298/dmtcs.6408
Schur polynomials and matrix positivity preserversArticle

Authors: Alexander Belton 1; Dominique Guillot 2; Apoorva Khare 3; Mihai Putinar 4,5

A classical result by Schoenberg (1942) identifies all real-valued functions that preserve positive semidefi- niteness (psd) when applied entrywise to matrices of arbitrary dimension. Schoenberg's work has continued to attract significant interest, including renewed recent attention due to applications in high-dimensional statistics. However, despite a great deal of effort in the area, an effective characterization of entrywise functions preserving positivity in a fixed dimension remains elusive to date. As a first step, we characterize new classes of polynomials preserving pos- itivity in fixed dimension. The proof of our main result is representation theoretic, and employs Schur polynomials. An alternate, variational approach also leads to several interesting consequences including (a) a hitherto unexplored Schubert cell-type stratification of the cone of psd matrices, (b) new connections between generalized Rayleigh quo- tients of Hadamard powers and Schur polynomials, and (c) a description of the joint kernels of Hadamard powers.


Volume: DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
Published on: April 22, 2020
Imported on: July 4, 2016
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]

Consultation statistics

This page has been seen 303 times.
This article's PDF has been downloaded 356 times.