Edward Allen ; Joshua Hallam ; Sarah Mason
-
Dual Immaculate Quasisymmetric Functions Expand Positively into Young Quasisymmetric Schur Functions
dmtcs:6410 -
Discrete Mathematics & Theoretical Computer Science,
April 22, 2020,
DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
-
https://doi.org/10.46298/dmtcs.6410
Dual Immaculate Quasisymmetric Functions Expand Positively into Young Quasisymmetric Schur FunctionsArticle
Authors: Edward Allen 1; Joshua Hallam 1; Sarah Mason 1
NULL##NULL##NULL
Edward Allen;Joshua Hallam;Sarah Mason
1 Department of Mathematics
We describe a combinatorial formula for the coefficients when the dual immaculate quasisymmetric func- tions are decomposed into Young quasisymmetric Schur functions. We prove this using an analogue of Schensted insertion. We also provide a Remmel-Whitney style rule to generate these coefficients algorithmically.
Elizabeth Niese;Sheila Sundaram;Stephanie van Willigenburg;Julianne Vega;Shiyun Wang, 2023, Row-strict dual immaculate functions, arXiv (Cornell University), 149, pp. 102540, 10.1016/j.aam.2023.102540, https://arxiv.org/abs/2202.00706.
A. Abram;C. Reutenauer, 2022, The stylic monoid, Semigroup Forum, 105, 1, pp. 1-45, 10.1007/s00233-022-10285-3.
John Maxwell Campbell, 2022, On Antipodes of Immaculate Functions, Annals of Combinatorics, 27, 3, pp. 579-598, 10.1007/s00026-022-00632-0.
Nicholas A. Loehr;Elizabeth Niese, 2022, Combinatorics of the immaculate inverse Kostka matrix, Algebraic Combinatorics, 4, 6, pp. 1119-1142, 10.5802/alco.193, https://doi.org/10.5802/alco.193.
Ezgi Kantarcı Oğuz, 2019, A Note on Jing and Li’s Type $$\varvec{B}$$ B Quasisymmetric Schur Functions, Annals of Combinatorics, 23, 1, pp. 159-170, 10.1007/s00026-019-00415-0.