Clement Dervieux ; Dominique Poulalhon ; Gilles Schaeffer - The number of corner polyhedra graphs

dmtcs:6420 - Discrete Mathematics & Theoretical Computer Science, April 22, 2020, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) -
The number of corner polyhedra graphs

Authors: Clement Dervieux 1; Dominique Poulalhon 1; Gilles Schaeffer ORCID-iD2

  • 1 Institut de Recherche en Informatique Fondamentale
  • 2 Laboratoire d'informatique de l'École polytechnique [Palaiseau]

Corner polyhedra were introduced by Eppstein and Mumford (2014) as the set of simply connected 3D polyhedra such that all vertices have non negative integer coordinates, edges are parallel to the coordinate axes and all vertices but one can be seen from infinity in the direction (1, 1, 1). These authors gave a remarkable characterization of the set of corner polyhedra graphs, that is graphs that can be skeleton of a corner polyhedron: as planar maps, they are the duals of some particular bipartite triangulations, which we call hereafter corner triangulations.In this paper we count corner polyhedral graphs by determining the generating function of the corner triangulations with respect to the number of vertices: we obtain an explicit rational expression for it in terms of the Catalan gen- erating function. We first show that this result can be derived using Tutte's classical compositional approach. Then, in order to explain the occurrence of the Catalan series we give a direct algebraic decomposition of corner triangu- lations: in particular we exhibit a family of almond triangulations that admit a recursive decomposition structurally equivalent to the decomposition of binary trees. Finally we sketch a direct bijection between binary trees and almond triangulations. Our combinatorial analysis yields a simpler alternative to the algorithm of Eppstein and Mumford for endowing a corner polyhedral graph with the cycle cover structure needed to realize it as a polyhedral graph.

Volume: DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
Published on: April 22, 2020
Imported on: July 4, 2016
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]

Linked publications - datasets - softwares

Source : ScholeXplorer IsRelatedTo ARXIV 1102.3619
Source : ScholeXplorer IsRelatedTo DOI 10.1016/j.jcta.2012.03.007
Source : ScholeXplorer IsRelatedTo DOI 10.48550/arxiv.1102.3619
  • 1102.3619
  • 10.48550/arxiv.1102.3619
  • 10.1016/j.jcta.2012.03.007
Unified bijections for maps with prescribed degrees and girth

Consultation statistics

This page has been seen 332 times.
This article's PDF has been downloaded 136 times.