Discrete Mathematics & Theoretical Computer Science |
Finding a solution to a Constraint Satisfaction Problem (CSP) is known to be an NP-hard task. This has motivatedthe multitude of works that have been devoted to developing techniques that simplify CSP instances before or duringtheir resolution.The present work proposes rigidly enforced schemes for simplifying binary CSPs that allow the narrowing of valuedomains, either via value merging or via value suppression. The proposed schemes can be viewed as parametrizedgeneralizations of two widely studied CSP simplification techniques, namely, value merging and neighbourhoodsubstitutability. Besides, we show that both schemes may be strengthened in order to allow variable elimination,which may result in more significant simplifications. This work contributes also to the theory of tractable CSPs byidentifying a new tractable class of binary CSP.