Recently, Fici, Restivo, Silva, and Zamboni introduced the notion of a $k$-anti-power, which is defined as a word of the form $w^{(1)} w^{(2)} \cdots w^{(k)}$, where $w^{(1)}, w^{(2)}, \ldots, w^{(k)}$ are distinct words of the same length. For an infinite word $w$ and a positive integer $k$, define $AP_j(w,k)$ to be the set of all integers $m$ such that $w_{j+1} w_{j+2} \cdots w_{j+km}$ is a $k$-anti-power, where $w_i$ denotes the $i$-th letter of $w$. Define also $\mathcal{F}_j(k) = (2 \mathbb{Z}^+ - 1) \cap AP_j(\mathbf{t},k)$, where $\mathbf{t}$ denotes the Thue-Morse word. For all $k \in \mathbb{Z}^+$, $\gamma_j(k) = \min (AP_j(\mathbf{t},k))$ is a well-defined positive integer, and for $k \in \mathbb{Z}^+$ sufficiently large, $\Gamma_j(k) = \sup ((2 \mathbb{Z}^+ -1) \setminus \mathcal{F}_j(k))$ is a well-defined odd positive integer. In his 2018 paper, Defant shows that $\gamma_0(k)$ and $\Gamma_0(k)$ grow linearly in $k$. We generalize Defant's methods to prove that $\gamma_j(k)$ and $\Gamma_j(k)$ grow linearly in $k$ for any nonnegative integer $j$. In particular, we show that $\displaystyle 1/10 \leq \liminf_{k \rightarrow \infty} (\gamma_j(k)/k) \leq 9/10$ and $\displaystyle 1/5 \leq \limsup_{k \rightarrow \infty} (\gamma_j(k)/k) \leq 3/2$. Additionally, we show that $\displaystyle \liminf_{k \rightarrow \infty} (\Gamma_j(k)/k) = 3/2$ and $\displaystyle \limsup_{k \rightarrow \infty} (\Gamma_j(k)/k) = 3$.

Source : oai:arXiv.org:1808.01528

Volume: vol. 23 no. 1

Section: Analysis of Algorithms

Published on: February 25, 2021

Submitted on: May 20, 2019

Keywords: Mathematics - Combinatorics,05A05, 68R15

This page has been seen 90 times.

This article's PDF has been downloaded 42 times.