Discrete Mathematics & Theoretical Computer Science |
A subset $A \subset \mathbb R^2$ is said to avoid distance $1$ if: $\forall x,y \in A, \left\| x-y \right\|_2 \neq 1.$ In this paper we study the number $m_1(\mathbb R^2)$ which is the supremum of the upper densities of measurable sets avoiding distance 1 in the Euclidean plane. Intuitively, $m_1(\mathbb R^2)$ represents the highest proportion of the plane that can be filled by a set avoiding distance 1. This parameter is related to the fractional chromatic number $\chi_f(\mathbb R^2)$ of the plane. We establish that $m_1(\mathbb R^2) \leq 0.25647$ and $\chi_f(\mathbb R^2) \geq 3.8991$.