vol. 23, no. 3

1. On the VC-dimension of half-spaces with respect to convex sets

Nicolas Grelier ; Saeed Gh. Ilchi ; Tillmann Miltzow ; Shakhar Smorodinsky.
A family S of convex sets in the plane defines a hypergraph H = (S, E) as follows. Every subfamily S' of S defines a hyperedge of H if and only if there exists a halfspace h that fully contains S' , and no other set of S is fully contained in h. In this case, we say that h realizes S'. We say a set S is shattered, if all its subsets are realized. The VC-dimension of a hypergraph H is the size of the largest shattered set. We show that the VC-dimension for pairwise disjoint convex sets in the plane is bounded by 3, and this is tight. In contrast, we show the VC-dimension of convex sets in the plane (not necessarily disjoint) is unbounded. We provide a quadratic lower bound in the number of pairs of intersecting sets in a shattered family of convex sets in the plane. We also show that the VC-dimension is unbounded for pairwise disjoint convex sets in R^d , for d > 2. We focus on, possibly intersecting, segments in the plane and determine that the VC-dimension is always at most 5. And this is tight, as we construct a set of five segments that can be shattered. We give two exemplary applications. One for a geometric set cover problem and one for a range-query data structure problem, to motivate our findings.

2. Determining the Hausdorff Distance Between Trees in Polynomial Time

Aleksander Kelenc.
The Hausdorff distance is a relatively new measure of similarity of graphs. The notion of the Hausdorff distance considers a special kind of a common subgraph of the compared graphs and depends on the structural properties outside of the common subgraph. There was no known efficient algorithm for the problem of determining the Hausdorff distance between two trees, and in this paper we present a polynomial-time algorithm for it. The algorithm is recursive and it utilizes the divide and conquer technique. As a subtask it also uses the procedure that is based on the well known graph algorithm of finding the maximum bipartite matching.

3. The structure and the list 3-dynamic coloring of outer-1-planar graphs

Yan Li ; Xin Zhang.
An outer-1-planar graph is a graph admitting a drawing in the plane so that all vertices appear in the outer region of the drawing and every edge crosses at most one other edge. This paper establishes the local structure of outer-1-planar graphs by proving that each outer-1-planar graph contains one of the seventeen fixed configurations, and the list of those configurations is minimal in the sense that for each fixed configuration there exist outer-1-planar graphs containing this configuration that do not contain any of another sixteen configurations. There are two interesting applications of this structural theorem. First of all, we conclude that every (resp. maximal) outer-1-planar graph of minimum degree at least 2 has an edge with the sum of the degrees of its two end-vertices being at most 9 (resp. 7), and this upper bound is sharp. On the other hand, we show that the list 3-dynamic chromatic number of every outer-1-planar graph is at most 6, and this upper bound is best possible.

4. Binary patterns in the Prouhet-Thue-Morse sequence

Jorge Almeida ; Ondřej Klíma.
We show that, with the exception of the words $a^2ba^2$ and $b^2ab^2$, all (finite or infinite) binary patterns in the Prouhet-Thue-Morse sequence can actually be found in that sequence as segments (up to exchange of letters in the infinite case). This result was previously attributed to unpublished work by D. Guaiana and may also be derived from publications of A. Shur only available in Russian. We also identify the (finitely many) finite binary patterns that appear non trivially, in the sense that they are obtained by applying an endomorphism that does not map the set of all segments of the sequence into itself.

5. A tight lower bound for the online bounded space hypercube bin packing problem

Yoshiharu Kohayakawa ; Flávio Keidi Miyazawa ; Yoshiko Wakabayashi.
In the $d$-dimensional hypercube bin packing problem, a given list of $d$-dimensional hypercubes must be packed into the smallest number of hypercube bins. Epstein and van Stee [SIAM J. Comput. 35 (2005)] showed that the asymptotic performance ratio $\rho$ of the online bounded space variant is $\Omega(\log d)$ and $O(d/\log d)$, and conjectured that it is $\Theta(\log d)$. We show that $\rho$ is in fact $\Theta(d/\log d)$, using probabilistic arguments.

6. Introduction to local certification

Laurent Feuilloley.
A distributed graph algorithm is basically an algorithm where every node of a graph can look at its neighborhood at some distance in the graph and chose its output. As distributed environment are subject to faults, an important issue is to be able to check that the output is correct, or in general that the network is in proper configuration with respect to some predicate. One would like this checking to be very local, to avoid using too much resources. Unfortunately most predicates cannot be checked this way, and that is where certification comes into play. Local certification (also known as proof-labeling schemes, locally checkable proofs or distributed verification) consists in assigning labels to the nodes, that certify that the configuration is correct. There are several point of view on this topic: it can be seen as a part of self-stabilizing algorithms, as labeling problem, or as a non-deterministic distributed decision. This paper is an introduction to the domain of local certification, giving an overview of the history, the techniques and the current research directions.