We give an algorithm which constructs recursively a sequence of simple random walks on $\mathbb{Z}$ converging almost surely to a Brownian motion. One obtains by the same method conditional versions of the simple random walk converging to the excursion, the bridge, the meander or the normalized pseudobridge.
Bénédicte Haas;Robin Stephenson, 2015, Scaling limits of $k$-ary growing trees, Annales de l Institut Henri Poincaré Probabilités et Statistiques, 51, 4, 10.1214/14-aihp622, https://doi.org/10.1214/14-aihp622.
Jim Pitman;Matthias Winkel, 2009, Regenerative tree growth: Binary self-similar continuum random trees and Poisson–Dirichlet compositions, The Annals of Probability, 37, 5, 10.1214/08-aop445, https://doi.org/10.1214/08-aop445.
Philippe Marchal, 2008, A note on the fragmentation of a stable tree, Discrete Mathematics & Theoretical Computer Science, DMTCS Proceedings vol. AI,..., Proceedings, 10.46298/dmtcs.3586, https://doi.org/10.46298/dmtcs.3586.
Jean-Maxime Labarbe;Jean-Francois Marckert, 2007, Asymptotics of Bernoulli random walks, bridges, excursions and meanders with a given number of peaks, Electronic Journal of Probability, 12, none, 10.1214/ejp.v12-397, https://doi.org/10.1214/ejp.v12-397.