A partition of $x > 0$ of the form $x = \sum_i 2^{a_i}3^{b_i}$ with distinct parts is called a double-base expansion of $x$. Such a representation can be obtained using a greedy approach, assuming one can efficiently compute the largest \mbox{$\{2,3\}$-integer}, i.e., a number of the form $2^a3^b$, less than or equal to $x$. In order to solve this problem, we propose an algorithm based on continued fractions in the vein of the Ostrowski number system, we prove its correctness and we analyse its complexity. In a second part, we present some experimental results on the length of double-base expansions when only a few iterations of our algorithm are performed.

Source : oai:HAL:lirmm-00374066v1

Volume: Vol. 11 no. 1

Section: Analysis of Algorithms

Published on: March 1, 2009

Submitted on: March 26, 2015

Keywords: [INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

This page has been seen 94 times.

This article's PDF has been downloaded 61 times.