Benjamin Assarf ; Michael Joswig ; Andreas Paffenholz - On a Classification of Smooth Fano Polytopes

dmtcs:12823 - Discrete Mathematics & Theoretical Computer Science, January 1, 2013, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) - https://doi.org/10.46298/dmtcs.12823
On a Classification of Smooth Fano PolytopesConference paper

Authors: Benjamin Assarf 1; Michael Joswig 1; Andreas Paffenholz 1

  • 1 Darmstadt University of Technology [Darmstadt]

[en]
The $d$-dimensional simplicial, terminal, and reflexive polytopes with at least $3d-2$ vertices are classified. In particular, it turns out that all of them are smooth Fano polytopes. This improves previous results of Casagrande (2006) and Øbro (2008). Smooth Fano polytopes play a role in algebraic geometry and mathematical physics. This text is an extended abstract of Assarf et al. (2012).

[fr]
Nous classifions les polytopes simpliciaux, terminaux et réflexifs de dimension $d$ avec au moins $3d-2$ sommets. En particulier, tous ces polytopes se trouvent être des polytopes de Fano lisses. Nous améliorons des résultats antérieurs de Casagrande (2006) et d’Øbro (2008). Les polytopes de Fano lisses apparaissent en géométrie algébrique et en physique mathématique. Ce texte est un résumé étendu de Assarf et al. (2012).


Volume: DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
Section: Proceedings
Published on: January 1, 2013
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] toric Fano varieties, lattice polytopes, terminal polytopes, smooth polytopes

Consultation statistics

This page has been seen 186 times.
This article's PDF has been downloaded 328 times.