The Flip Diameter of Rectangulations and Convex SubdivisionsArticle
Authors: Eyal Ackerman ; Michelle M. Allen ; Gill Barequet ; Maarten Löffler ; Joshua Mermelstein ; Diane L. Souvaine ; Csaba D. Tóth
NULL##NULL##NULL##NULL##NULL##NULL##NULL
Eyal Ackerman;Michelle M. Allen;Gill Barequet;Maarten Löffler;Joshua Mermelstein;Diane L. Souvaine;Csaba D. Tóth
We study the configuration space of rectangulations and convex subdivisions of $n$ points in the plane. It is shown that a sequence of $O(n\log n)$ elementary flip and rotate operations can transform any rectangulation to any other rectangulation on the same set of $n$ points. This bound is the best possible for some point sets, while $\Theta(n)$ operations are sufficient and necessary for others. Some of our bounds generalize to convex subdivisions of $n$ points in the plane.
Comment: 17 pages, 12 figures, an extended abstract has been presented at LATIN 2014
Volume: Vol. 18 no. 3
Section: Combinatorics
Published on: March 17, 2016
Submitted on: March 16, 2016
Keywords: Computer Science - Discrete Mathematics, Computer Science - Computational Geometry, Mathematics - Combinatorics
Funding:
Source : OpenAIRE Graph- Geometric Data Structures; Funder: National Science Foundation; Code: 0830734
- Geometric Data Imprecision in Realistic Settings; Funder: Netherlands Organisation for Scientific Research (NWO); Code: 639.021.123