Authors: Alberto Del Lungo ; Massimo Mirolli 1; Renzo Pinzani 2; Simone Rinaldi 2
NULL##NULL##NULL##NULL
Alberto Del Lungo;Massimo Mirolli;Renzo Pinzani;Simone Rinaldi
1 Department of Mathematics and Computer Science / Dipartimento di Scienze Matematiche e Informatiche "Roberto Magari"
2 Dipartimento di Sistemi e Informatica
In this paper we consider two classes of lattice paths on the plane which use \textitnorth, \textiteast, \textitsouth,and \textitwest unitary steps, beginningand ending at (0,0).We enumerate them according to the number ofsteps by means of bijective arguments; in particular, we apply the cycle lemma.Then, using these results, we provide a bijective proof for the number of directed-convex polyominoes having a fixed number of rows and columns.
Cakić, Nenad; Mansour, Toufik; Yıldırım, Gökhan, 2022, A Decomposition Of Column-Convex Polyominoes And Two Vertex Statistics, Mathematics In Computer Science, 16, 1, 10.1007/s11786-022-00528-5.
Mansour, Toufik; Rastegar, Reza; Shabani, Armend Sh., 2021, On Column-Convex And Convex Carlitz Polyominoes, Mathematics In Computer Science, 15, 4, pp. 889-898, 10.1007/s11786-021-00518-z.
Mantaci, Roberto; Massazza, Paolo, 2011, From Linear Partitions To Parallelogram Polyominoes, Developments In Language Theory, pp. 350-361, 10.1007/978-3-642-22321-1_30.
Massazza, Paolo, 2015, On The Generation Of Convex Polyominoes, Discrete Applied Mathematics, 183, pp. 78-89, 10.1016/j.dam.2014.02.014.
Richard, Christoph, 2009, Limit Distributions And Scaling Functions, Polygons, Polyominoes And Polycubes, pp. 247-299, 10.1007/978-1-4020-9927-4_11.