Sam Clearman ; Matthew Hyatt ; Brittany Shelton ; Mark Skandera
-
Evaluations of Hecke algebra traces at Kazhdan-Lusztig basis elements
dmtcs:2368 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2013,
DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
-
https://doi.org/10.46298/dmtcs.2368
Evaluations of Hecke algebra traces at Kazhdan-Lusztig basis elements
Authors: Sam Clearman 1; Matthew Hyatt 1; Brittany Shelton 1; Mark Skandera 1
NULL##NULL##NULL##NULL
Sam Clearman;Matthew Hyatt;Brittany Shelton;Mark Skandera
1 Department of Mathematics
For irreducible characters $\{ \chi_q^{\lambda} | \lambda \vdash n\}$ and induced sign characters $\{\epsilon_q^{\lambda} | \lambda \vdash n\}$ of the Hecke algebra $H_n(q)$, and Kazhdan-Lusztig basis elements $C'_w(q)$ with $w$ avoiding the pattern 312, we combinatorially interpret the polynomials $\chi_q^{\lambda}(q^{\frac{\ell(w)}{2}} C'_w(q))$ and $\epsilon_q^{\lambda}(q^{\frac{\ell(w)}{2}} C'_w(q))$. This gives a new algebraic interpretation of $q$-chromatic symmetric functions of Shareshian and Wachs. We conjecture similar interpretations and generating functions corresponding to other $H_n(q)$-traces.