Avinash J. Dalal ; Jennifer Morse
-
A $t$-generalization for Schubert Representatives of the Affine Grassmannian
dmtcs:2371 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2013,
DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
-
https://doi.org/10.46298/dmtcs.2371A $t$-generalization for Schubert Representatives of the Affine GrassmannianConference paper
Authors: Avinash J. Dalal 1; Jennifer Morse 1
NULL##NULL
Avinash J. Dalal;Jennifer Morse
- 1 Department of mathematics [Philadelphie]
[en]
We introduce two families of symmetric functions with an extra parameter $t$ that specialize to Schubert representatives for cohomology and homology of the affine Grassmannian when $t=1$. The families are defined by a statistic on combinatorial objects associated to the type-$A$ affine Weyl group and their transition matrix with Hall-Littlewood polynomials is $t$-positive. We conjecture that one family is the set of $k$-atoms.
[fr]
Nous présentons deux familles de fonctions symétriques dépendant d'un paramètre $t$ et dont les spécialisations à $t=1$ correspondent aux classes de Schubert dans la cohomologie et l'homologie des variétés Grassmanniennes affines. Les familles sont définies par des statistiques sur certains objets combinatoires associés au groupe de Weyl affine de type $A$ et leurs matrices de transition dans la base des polynômes de Hall-Littlewood sont $t$-positives. Nous conjecturons qu'une de ces familles correspond aux $k$-atomes.
Volume: DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
Section: Proceedings
Published on: January 1, 2013
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] $k$-Schur functions, Pieri rule, Bruhat order, Hall-Littlewood polynomials
Funding:
Source : OpenAIRE Graph- Combinatorics of affine Schubert calculus, K-theory, and Macdonald polynomials; Funder: National Science Foundation; Code: 1001898