We introduce a new method for showing that the roots of the characteristic polynomial of a finite lattice are all nonnegative integers. Our method gives two simple conditions under which the characteristic polynomial factors. We will see that Stanley's Supersolvability Theorem is a corollary of this result. We can also use this method to demonstrate a new result in graph theory and give new proofs of some classic results concerning the Möbius function.

Source : oai:HAL:hal-01207579v1

Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)

Section: Proceedings

Published on: January 1, 2014

Submitted on: November 21, 2016

Keywords: characterstic polynomial,lattice,Möbius function,quotient,supersolvability,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]

This page has been seen 71 times.

This article's PDF has been downloaded 379 times.