J.B. Lewis ; V. Reiner ; D. Stanton - Reflection factorizations of Singer cycles

dmtcs:2401 - Discrete Mathematics & Theoretical Computer Science, January 1, 2014, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) - https://doi.org/10.46298/dmtcs.2401
Reflection factorizations of Singer cyclesConference paper

Authors: J.B. Lewis 1; V. Reiner 1; D. Stanton 1

  • 1 School of Mathematics

[en]
The number of shortest factorizations into reflections for a Singer cycle in $GL_n(\mathbb{F}_q)$ is shown to be $(q^n-1)^{n-1}$. Formulas counting factorizations of any length, and counting those with reflections of fixed conjugacy classes are also given.

[fr]
Nous prouvons que le nombre de factorisations de longueur minimale d’un cycle de Singer dans $GL_n(\mathbb{F}_q)$ comme un produit de réflexions est $(q^n-1)^{n-1}$. Nous présentons aussi des formules donnant le nombre de factorisations de toutes les longueurs ainsi que des formules pour le nombre de factorisations comme produit de réflexions ayant des classes de conjugaison fixes.


Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
Section: Proceedings
Published on: January 1, 2014
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] Singer cycle, Coxeter torus, anisotropic maximal torus, reflection, transvection, factorization, finite general linear group, regular element, q-analogue, higher genus, Coxeter element
Funding:
    Source : OpenAIRE Graph
  • Reflection Group Combinatorics; Funder: National Science Foundation; Code: 1001933
  • RTG in Combinatorics; Funder: National Science Foundation; Code: 1148634

12 Documents citing this article

Consultation statistics

This page has been seen 490 times.
This article's PDF has been downloaded 1192 times.