J.B. Lewis ; V. Reiner ; D. Stanton
-
Reflection factorizations of Singer cycles
dmtcs:2401 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2014,
DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
-
https://doi.org/10.46298/dmtcs.2401
Reflection factorizations of Singer cyclesConference paper
Authors: J.B. Lewis 1; V. Reiner 1; D. Stanton 1
NULL##NULL##NULL
J.B. Lewis;V. Reiner;D. Stanton
1 School of Mathematics
The number of shortest factorizations into reflections for a Singer cycle in $GL_n(\mathbb{F}_q)$ is shown to be $(q^n-1)^{n-1}$. Formulas counting factorizations of any length, and counting those with reflections of fixed conjugacy classes are also given.
Theo Douvropoulos, 2024, Lyashko–Looijenga morphisms and primitive factorizations of Coxeter elements, Mathematische Annalen, 10.1007/s00208-024-03006-4.
Angèle M. Foley;Alejandro H. Morales;Amarpreet Rattan;Karen Yeats, 2022, Combinatorial and Algebraic Enumeration: a survey of the work of Ian P. Goulden and David M. Jackson, Algebraic Combinatorics, 5, 6, pp. 1205-1226, 10.5802/alco.269, https://doi.org/10.5802/alco.269.
Guillaume Chapuy;Theo Douvropoulos, 2022, Coxeter factorizations with generalized Jucys–Murphy weights and Matrix‐Tree theorems for reflection groups, arXiv (Cornell University), 126, 1, pp. 129-191, 10.1112/plms.12490, https://arxiv.org/abs/2012.04519.
Jia Huang;Joel Brewster Lewis;Victor Reiner, 2017, Absolute order in general linear groups, arXiv (Cornell University), 95, 1, pp. 223-247, 10.1112/jlms.12013, http://arxiv.org/abs/1506.03332.