Angêle Hamel ; Ronald King
-
Deformations of Weyl's Denominator Formula
dmtcs:2412 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2014,
DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
-
https://doi.org/10.46298/dmtcs.2412Deformations of Weyl's Denominator FormulaConference paper
Authors: Angêle Hamel 1; Ronald King 2
NULL##NULL
Angêle Hamel;Ronald King
- 1 Department of Physics and Computer Science [Waterloo]
- 2 School of Mathematics [Southampton]
[en]
We introduce a series of conjectured identities that deform Weyl's denominator formula and generalize Tokuyama's formula to other root systems. These conjectures generalize a number of well-known results due to Okada. We also prove a related result for $B'_n$ that generalizes a theorem of Simpson.
[fr]
Nous proposons une série de conjectures qui sont des déformations de la formule dénominateur de Weyl et qui généralisent la formule de Tokuyama à d’autres systèmes de racines. Ces résultats sont des généralisations de théorèmes bien connus dus à Okada. Nous donnons aussi la preuve d’un résultat pour $B'_n$ qui est une généralisation d’un théorème de Simpson.
Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
Section: Proceedings
Published on: January 1, 2014
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] Weyl's denominator formula, alternating sign matrices, lattice paths
Funding:
Source : OpenAIRE Graph- Funder: Natural Sciences and Engineering Research Council of Canada