Takuro Abe ; Mohamed Barakat ; Michael Cuntz ; Torsten Hoge ; Hiroaki Terao - The freeness of ideal subarrangements of Weyl arrangements

dmtcs:2418 - Discrete Mathematics & Theoretical Computer Science, January 1, 2014, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) - https://doi.org/10.46298/dmtcs.2418
The freeness of ideal subarrangements of Weyl arrangementsConference paper

Authors: Takuro Abe 1; Mohamed Barakat ORCID2; Michael Cuntz ORCID3; Torsten Hoge 4; Hiroaki Terao 5

  • 1 Department of Mechanical Engineering and Science, Kyoto University
  • 2 Fachbereich Mathematik [Kaiserslautern]
  • 3 Fakultät fur Mathematik und Physik [Hannover]
  • 4 Fakultät für Mathematik [Bochum]
  • 5 Department of Mathematics [Sapporo]

[en]
A Weyl arrangement is the arrangement defined by the root system of a finite Weyl group. When a set of positive roots is an ideal in the root poset, we call the corresponding arrangement an ideal subarrangement. Our main theorem asserts that any ideal subarrangement is a free arrangement and that its exponents are given by the dual partition of the height distribution, which was conjectured by Sommers-Tymoczko. In particular, when an ideal subarrangement is equal to the entire Weyl arrangement, our main theorem yields the celebrated formula by Shapiro, Steinberg, Kostant, and Macdonald. The proof of the main theorem is classification-free. It heavily depends on the theory of free arrangements and thus greatly differs from the earlier proofs of the formula.

[fr]
Un arrangement de Weyl est défini par l’arrangement d’hyperplans du système de racines d’un groupe de Weyl fini. Quand un ensemble de racines positives est un idéal dans le poset de racines, nous appelons l’arrangement correspondant un sous-arrangement idéal. Notre théorème principal affirme que tout sous-arrangement idéal est un arrangement libre et que ses exposants sont donnés par la partition duale de la distribution des hauteurs, ce qui avait été conjecturé par Sommers-Tymoczko. En particulier, quand le sous-arrangement idéal est égal à l’arrangement de Weyl, notre théorème principal donne la célèbre formule par Shapiro, Steinberg, Kostant et Macdonald. La démonstration du théorème principal n’utilise pas de classification. Elle dépend fortement de la théorie des arrangements libres et diffère ainsi grandement des démonstrations précédentes de la formule.


Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
Section: Proceedings
Published on: January 1, 2014
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] Weyl arrangement, root system, ideal, free arrangements, exponents, height

15 Documents citing this article

Consultation statistics

This page has been seen 547 times.
This article's PDF has been downloaded 406 times.