Masao Ishikawa ; Jiang Zeng - Selberg integrals and Hankel determinants

dmtcs:2422 - Discrete Mathematics & Theoretical Computer Science, January 1, 2014, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) - https://doi.org/10.46298/dmtcs.2422
Selberg integrals and Hankel determinantsConference paper

Authors: Masao Ishikawa 1; Jiang Zeng 2

  • 1 Department of Mathematics [Okinawa]
  • 2 Combinatoire, théorie des nombres

[en]
In our previous works "Pfaffian decomposition and a Pfaffian analogue of $q$-Catalan Hankel determinants'' (by M.Ishikawa, H. Tagawa and J. Zeng, J. Combin. Theory Ser. A, 120, 2013, 1263-1284) we have proposed several ways to evaluate certain Catalan-Hankel Pffafians and also formulated several conjectures. In this work we propose a new approach to compute these Catalan-Hankel Pffafians using Selberg's integral as well as their $q$-analogues. In particular, this approach permits us to settle most of the conjectures in our previous paper.

[fr]
Dans nos travaux précédents “Pfaffian decomposition and a Pfaffian analogue of $q$-Catalan Hankel determinants” (by M.Ishikawa, H. Tagawa and J. Zeng, J. Combin. Theory Ser. A, 120, 2013, 1263–1284) nous avons proposé plusieurs méthodes pour évaluer certains Catalan–Pffafian déterminants de Hankel et avons aussi formulé plusieurs conjectures. Dans ce travail nous proposons une nouvelle approche pour calculer ces Catalan-Pffafian déterminants de Hankel en utilisant l’intégrale de Selberg ainsi que leurs $q$-analogues. En particulier, cette approche nous permet de confirmer la plus part de nos conjectures précédentes.


Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
Section: Proceedings
Published on: January 1, 2014
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] Hankel determinants, Pfaffians, hyperpfaffians, Orthogonal polynomials

Consultation statistics

This page has been seen 462 times.
This article's PDF has been downloaded 634 times.