Federico Ardila ; Federico Castillo ; Michael Henley
-
The arithmetic Tutte polynomials of the classical root systems
dmtcs:2447 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2014,
DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
-
https://doi.org/10.46298/dmtcs.2447
The arithmetic Tutte polynomials of the classical root systemsArticle
Authors: Federico Ardila 1,2; Federico Castillo 3,4; Michael Henley 5
Many combinatorial and topological invariants of a hyperplane arrangement can be computed in terms of its Tutte polynomial. Similarly, many invariants of a hypertoric arrangement can be computed in terms of its <i>arithmetic</i> Tutte polynomial. We compute the arithmetic Tutte polynomials of the classical root systems $A_n, B_n, C_n$, and $D_n$ with respect to their integer, root, and weight lattices. We do it in two ways: by introducing a \emphfinite field method for arithmetic Tutte polynomials, and by enumerating signed graphs with respect to six parameters.