Federico Ardila ; Federico Castillo ; Michael Henley - The arithmetic Tutte polynomials of the classical root systems

dmtcs:2447 - Discrete Mathematics & Theoretical Computer Science, January 1, 2014, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) - https://doi.org/10.46298/dmtcs.2447
The arithmetic Tutte polynomials of the classical root systemsConference paper

Authors: Federico Ardila 1,2; Federico Castillo ORCID3,4; Michael Henley 5

Many combinatorial and topological invariants of a hyperplane arrangement can be computed in terms of its Tutte polynomial. Similarly, many invariants of a hypertoric arrangement can be computed in terms of its <i>arithmetic</i> Tutte polynomial. We compute the arithmetic Tutte polynomials of the classical root systems An,Bn,Cn, and Dn with respect to their integer, root, and weight lattices. We do it in two ways: by introducing a \emphfinite field method for arithmetic Tutte polynomials, and by enumerating signed graphs with respect to six parameters.


Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
Section: Proceedings
Published on: January 1, 2014
Imported on: November 21, 2016
Keywords: Root systems,Toric arrangements,Tutte polynomials,Rogers-Ramanujan function,Signed graphs,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
Funding:
    Source : OpenAIRE Graph
  • Creating Momentum through Communicating Mathematics; Funder: National Science Foundation; Code: 0841164
  • CAREER: Matroids, polytopes, and their valuations in algebra and geometry; Funder: National Science Foundation; Code: 0956178

Consultation statistics

This page has been seen 367 times.
This article's PDF has been downloaded 354 times.