Mikhail Khovanov ; Radmila Sazdanovic - A Categorification of One-Variable Polynomials

dmtcs:2468 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2468
A Categorification of One-Variable PolynomialsConference paper

Authors: Mikhail Khovanov 1; Radmila Sazdanovic 2

  • 1 Department of Mathematics [Columbia]
  • 2 Department of mathematics [North Carolina]

[en]
We develop a diagrammatic categorification of the polynomial ring $\mathbb{Z} [x]$, based on a geometrically-defined graded algebra and show how to lift various operations on polynomials to the categorified setting. Our categorification satisfies a version of the Bernstein-Gelfand-Gelfand reciprocity property, with indecomposable projective modules corresponding to $x^n$ and standard modules to $(x -1)^n$ in the Grothendieck ring. This construction generalizes tocategorification of various orthogonal polynomials.

[fr]
Résumé. Catégorification de l’anneau des polynômes $\mathbb{Z} [x]$, Nous développons une catégorification diagrammatique de l’anneau des polynômes $\mathbb{Z} [x]$, s’appuyant sur une algèbre graduée définie de manière géométrique, et nous décrivons comment on peut relever certaines opérations sur les polynômes dans cette catégorification. Notre catégorification vérifie une version de la réciprocité de Bernstein-Gelfand-Gelfand, avec les modules projectifs indécomposables correspondants à $x^n$ et les modules standards correspondants à $(x - 1)^n$ dans l’anneau de Grothendieck. Cette construction se généralise à certains polynômes orthogonaux.


Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] categorification, diagrammatic algebra, Grothendieck ring, Bernstein-Gelfand reciprocity, crossing less matchings
Funding:
    Source : OpenAIRE Graph
  • SOLAR: Programming the Self-Assembly of Matter for Solar Energy Conversion; Funder: National Science Foundation; Code: 0935165
  • Link homology and categorification of quantum groups; Funder: National Science Foundation; Code: 1005750

Consultation statistics

This page has been seen 424 times.
This article's PDF has been downloaded 737 times.