Mikael Hansson - The Bruhat order on conjugation-invariant sets of involutions in the symmetric group

dmtcs:2472 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2472
The Bruhat order on conjugation-invariant sets of involutions in the symmetric groupConference paper

Authors: Mikael Hansson 1

  • 1 Department of Mathematics [Linköping]

12 pages, 3 figures

[en]
Let $I_n$ be the set of involutions in the symmetric group $S_n$, and for $A \subseteq \{0,1,\ldots,n\}$, let \[ F_n^A=\{\sigma \in I_n \mid \text{$\sigma$ has $a$ fixed points for some $a \in A$}\}. \] We give a complete characterisation of the sets $A$ for which $F_n^A$, with the order induced by the Bruhat order on $S_n$, is a graded poset. In particular, we prove that $F_n^{\{1\}}$ (i.e., the set of involutions with exactly one fixed point) is graded, which settles a conjecture of Hultman in the affirmative. When $F_n^A$ is graded, we give its rank function. We also give a short new proof of the EL-shellability of $F_n^{\{0\}}$ (i.e., the set of fixed point-free involutions), which was recently proved by Can, Cherniavsky, and Twelbeck.

[fr]
Soit $I_n$ l’ensemble d’involutions dans le groupe symétrique $S_n$, et pour $A \subseteq \{0,1,\ldots,n\}$, soit\[ F_n^A=\{\sigma \in I_n \mid \text{$\sigma$ a $a$ points fixes pour quelque $a \in A$}\}. \] Nous caractérisons tous les ensembles $A$ dont les $F_n^A$ , avec l’ordre induit par l’ordre de Bruhat sur $S_n$, est un posetgradué. En particulier, nous démontrons que $F_n^{\{1\}}$ (c’est-à-dire, l’ensemble d’involutions avec précis en point fixe)est gradué, ce qui résout une conjecture d’Hultman à l’affirmative. Lorsque $F_n^A$ est gradué, nous donnons sa fonctionde rang. En plus, nous donnons une nouvelle démonstration courte l’EL-shellability de $F_n^{\{0\}}$ (c’est-à-dire, l’ensembled’involutions sans points fixes), établie récemment par Can, Cherniavsky et Twelbeck.


Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Bruhat order, symmetric group, involution, conjugacy class, graded poset, EL-shellability

Consultation statistics

This page has been seen 378 times.
This article's PDF has been downloaded 730 times.