Zachary Hamaker ; Nathan Williams - Subwords and Plane Partitions

dmtcs:2481 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2481
Subwords and Plane PartitionsConference paper

Authors: Zachary Hamaker 1; Nathan Williams ORCID2

  • 1 Institute for Mathematics and its Applications [Minneapolis]
  • 2 Laboratoire de combinatoire et d'informatique mathématique [Montréal]

[en]
Using the powerful machinery available for reduced words of type $B$, we demonstrate a bijection between centrally symmetric $k$-triangulations of a $2(n + k)$-gon and plane partitions of height at most $k$ in a square of size $n$. This bijection can be viewed as the type $B$ analogue of a bijection for $k$-triangulations due to L. Serrano and C. Stump.

[fr]
En utilisant la machinerie puissante pour mots réduits de type $B$, nous démontrons une bijection entre les $k$-triangulations centralement symétriques d’un $2(n + k)$-gon et les partitions de plans de hauteur inférieure ou égale à $k$ dans un carré de taille $n$. Cette bijection peut être considérée comme l’analogue de type $B$ d’une bijection de $k$-triangulations due à L. Serrano et C. Stump.


Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] centrally symmetric $k$-triangulation, subword complex, plane partition, reduced word, linear extension, insertion, Little bump

2 Documents citing this article

Consultation statistics

This page has been seen 467 times.
This article's PDF has been downloaded 531 times.