Travis Scrimshaw - Rigged configurations of type $D_4^{(3)}$ and the filling map

dmtcs:2494 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2494
Rigged configurations of type $D_4^{(3)}$ and the filling mapConference paper

Authors: Travis Scrimshaw ORCID1

[en]
We give a statistic preserving bijection from rigged configurations to a tensor product of Kirillov–Reshetikhin crystals $\otimes_{i=1}^{N}B^{1,s_i}$ in type $D_4^{(3)}$ by using virtualization into type $D_4^{(1)}$. We consider a special case of this bijection with $B=B^{1,s}$, and we obtain the so-called Kirillov–Reshetikhin tableaux model for the Kirillov–Reshetikhin crystal.

[fr]
Nous donnons une bijection prservant les statistiques entre les configurations gréées et les produits tensoriels de cristaux de Kirillov–Reshetikhin $\otimes_{i=1}^{N}B^{1,s_i}$ de type $D_4^{(3)}$, via une virtualisation en type $D_4^{(1)}$. Nous considérons un cas particulier de cette bijection pour $B=B^{1,s}$ et obtenons ainsi les modèles de tableaux appelés Kirillov–Reshetikhin pour le cristal Kirillov–Reshetikhin.


Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] rigged configuration, Kirillov–Reshetikhin crystal, bijection
Funding:
    Source : OpenAIRE Graph
  • Collaborative Research: SI2-SSE: Sage-Combinat: Developing and Sharing Open Source Software for Algebraic Combinatorics; Funder: National Science Foundation; Code: 1147247

Consultation statistics

This page has been seen 385 times.
This article's PDF has been downloaded 562 times.