Élie de Panafieu - Enumeration and structure of inhomogeneous graphs

dmtcs:2501 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2501
Enumeration and structure of inhomogeneous graphsConference paper

Authors: Élie De Panafieu

    [en]
    We analyze a general model of weighted graphs, introduced by de Panafieu and Ravelomanana (2014) and similar to the inhomogeneous graph model of Söderberg (2002). We investigate the sum of the weights of those graphs and their structure. Those results allow us to give a new proof in a more general setting of a theorem of Wright (1972) on the enumeration of properly colored graphs. We also discuss applications related to social networks

    [fr]
    Nous étudions un modèle de graphes pondérés, introduits par de Panafieu et Ravelomanana (2014) et proche des graphes inhomogènes de Söderberg (2002). Nous analysons la somme des poids de ces graphes et leur structure. Ces résultats nous permettent d’obtenir une nouvelle preuve d’un théorème de Wright (1972) sur l’énumération des graphes bien colorés, ainsi que sur un modèle lié aux réseaux sociaux.


    Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
    Section: Proceedings
    Published on: January 1, 2015
    Imported on: November 21, 2016
    Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] generating functions, analytic combinatorics, multivariate Laplace method, inhomogeneous graphs

    Consultation statistics

    This page has been seen 347 times.
    This article's PDF has been downloaded 661 times.