Cristian Lenart ; Kirill Zainoulline - On Schubert calculus in elliptic cohomology

dmtcs:2502 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2502
On Schubert calculus in elliptic cohomologyConference paper

Authors: Cristian Lenart 1; Kirill Zainoulline 2,3

  • 1 Department of Mathematics and Statistics [Albany-USA]
  • 2 Department of Mathematics and Statistics [Ottawa]
  • 3 Departement of Mathematics and Statistics [Ottawa, University of Ottawa]

[en]
An important combinatorial result in equivariant cohomology and $K$-theory Schubert calculus is represented by the formulas of Billey and Graham-Willems for the localization of Schubert classes at torus fixed points. These formulas work uniformly in all Lie types, and are based on the concept of a root polynomial. We define formal root polynomials associated with an arbitrary formal group law (and thus a generalized cohomology theory). We usethese polynomials to simplify the approach of Billey and Graham-Willems, as well as to generalize it to connective $K$-theory and elliptic cohomology. Another result is concerned with defining a Schubert basis in elliptic cohomology (i.e., classes independent of a reduced word), using the Kazhdan-Lusztig basis of the corresponding Hecke algebra.

[fr]
Un résultat combinatoire important dans le calcul de Schubert pour la cohomologie et la $K$-théorie équivariante est représenté par les formules de Billey et Graham-Willems pour la localisation des classes de Schubert aux points fixes du tore. Ces formules sont uniformes pour tous les types de Lie, et sont basés sur le concept d’un polynôme de racines. Nous définissons les polynômes formels de racines associées à une loi arbitraire de groupe formel (et donc à une théorie de cohomologie généralisée). Nous utilisons ces polynômes pour simplifier les preuves de Billey et Graham-Willems, et aussi pour généraliser leurs résultats à la $K$-théorie connective et la cohomologie elliptique. Un autre résultat concerne la définition d’une base de Schubert dans cohomologie elliptique (c’est à dire, des classes indépendantes d’un mot réduit), en utilisant la base de Kazhdan-Lusztig de l’algèbre de Hecke correspondant.


Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Schubert classes, Bott-Samelson classes, elliptic cohomology, root polynomial, Kazhdan-Lusztig basis
Funding:
    Source : OpenAIRE Graph
  • Funder: Natural Sciences and Engineering Research Council of Canada
  • Representation Theory and Schubert Calculus: Combinatorics and Interactions; Funder: National Science Foundation; Code: 1362627
  • Combinatorics of Crystals, Macdonald Polynomials, and Schubert Calculus; Funder: National Science Foundation; Code: 1101264

Consultation statistics

This page has been seen 415 times.
This article's PDF has been downloaded 593 times.