A combinatorial expression for the coefficient of the Schur function $s_{\lambda}$ in the expansion of the plethysm $p_{n/d}^d \circ s_{\mu}$ is given for all $d$ dividing $n$ for the cases in which $n=2$ or $\lambda$ is rectangular. In these cases, the coefficient $\langle p_{n/d}^d \circ s_{\mu}, s_{\lambda} \rangle$ is shown to count, up to sign, the number of fixed points of an $\langle s_{\mu}^n, s_{\lambda} \rangle$-element set under the $d^e$ power of an order $n$ cyclic action. If $n=2$, the action is the Schützenberger involution on semistandard Young tableaux (also known as evacuation), and, if $\lambda$ is rectangular, the action is a certain power of Schützenberger and Shimozono's <i>jeu-de-taquin</i> promotion.This work extends results of Stembridge and Rhoades linking fixed points of the Schützenberger actions to ribbon tableaux enumeration. The conclusion for the case $n=2$ is equivalent to the domino tableaux rule of Carré and Leclerc for discriminating between the symmetric and antisymmetric parts of the square of a Schur function.

Source : oai:HAL:hal-01337813v1

Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)

Section: Proceedings

Published on: January 1, 2015

Submitted on: November 21, 2016

Keywords: plethysms,Schützenberger involution,<i>jeu-de-taquin</i> promotion,canonical bases,Kashiwara crystals,cyclic sieving phenomenon,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

This page has been seen 20 times.

This article's PDF has been downloaded 36 times.