Frédéric Chapoton - Stokes posets and serpent nests

dmtcs:1382 - Discrete Mathematics & Theoretical Computer Science, December 2, 2016, Vol. 18 no. 3 - https://doi.org/10.46298/dmtcs.1382
Stokes posets and serpent nestsArticle

Authors: Frédéric Chapoton ORCID1

30 pages, 12 figures

[en]
We study two different objects attached to an arbitrary quadrangulation of a regular polygon. The first one is a poset, closely related to the Stokes polytopes introduced by Baryshnikov. The second one is a set of some paths configurations inside the quadrangulation, satisfying some specific constraints. These objects provide a generalisation of the existing combinatorics of cluster algebras and nonnesting partitions of type A.

[fr]
On étudie deux objets attachés à une quadrangulation quelconque d'un polygone régulier. Le premier objet est un ensemble partiellement ordonné, fortement lié aux polytopes de Stokes introduits par Barysknikov. Le second est un ensemble de configurations de chemins dans la quadrangulation. Ces deux objets généralisent respectivement les aspects combinatoires des algèbres amassées et des partitions non-emboitées de type A.


Volume: Vol. 18 no. 3
Section: Combinatorics
Published on: December 2, 2016
Imported on: December 2, 2016
Keywords: MSC: 05E 06A11 13F60, [MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA], [en] poset, Tamari lattice, quadrangulation
Funding:
    Source : HAL
  • Combinatoire Algébrique, Résurgence, Moules et Applications; Funder: French National Research Agency (ANR); Code: ANR-12-BS01-0017

4 Documents citing this article

Consultation statistics

This page has been seen 877 times.
This article's PDF has been downloaded 800 times.